Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Biochim Biophys Acta Bioenerg ; 1864(2): 148946, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455648

RESUMO

Possibly the most abundant group of anoxygenic phototrophs are marine photoheterotrophic Gammaproteobacteria belonging to the NOR5/OM60 clade. As little is known about their photosynthetic apparatus, the photosynthetic complexes from the marine phototrophic bacterium Congregibacter litoralis KT71 were purified and spectroscopically characterised. The intra-cytoplasmic membranes contain a smaller amount of photosynthetic complexes when compared with anaerobic purple bacteria. Moreover, the intra-cytoplasmic membranes contain only a minimum amount of peripheral LH2 complexes. The complexes are populated by bacteriochlorophyll a, spirilloxanthin and two novel ketocarotenoids, with biophysical and biochemical properties similar to previously characterised complexes from purple bacteria. The organization of the RC-LH1 complex has been further characterised using cryo-electron microscopy. The overall organisation is similar to the complex from the gammaproteobacterium Thermochromatium tepidum, with the type-II reaction centre surrounded by a slightly elliptical LH1 antenna ring composed of 16 αß-subunits with no discernible gap or pore. The RC-LH1 and LH2 apoproteins are phylogenetically related to other halophilic species but LH2 also to some alphaproteobacterial species. It seems that the reduction of light-harvesting apparatus and acquisition of novel ketocarotenoids in Congregibacter litoralis KT71 represent specific adaptations for operating the anoxygenic photosynthesis under aerobic conditions at sea.


Assuntos
Gammaproteobacteria , Complexo de Proteínas do Centro de Reação Fotossintética , Microscopia Crioeletrônica , Gammaproteobacteria/química , Fotossíntese
2.
Microbiol Spectr ; 10(1): e0093421, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019679

RESUMO

Phaeocystis globosa causes severe marine pollution by forming harmful algal blooms and releasing hemolytic toxins and is therefore harmful to marine ecosystems and aquaculture industries. In this study, Microbulbifer sp. YX04 exerted high algicidal activity against P. globosa by producing and secreting metabolites. The algicidal activity of the YX04 supernatant was stable after exposure to different temperatures (-80 to 100°C) and pH values (4 to 12) for 2 h, suggesting that algicidal substances could temporarily be stored under these temperature and pH value conditions. To explore the algicidal process and mechanism, morphological and structural changes, oxidative stress, photosynthesis, autophagic flux, and global gene expression were investigated. Biochemical analyses showed that the YX04 supernatant induced reactive oxygen species (ROS) overproduction, which caused lipid peroxidation and malondialdehyde (MDA) accumulation in P. globosa. Transmission electron microscopy (TEM) observation and the significant decrease in both maximum photochemical quantum yield (Fv/Fm) and relative electron transfer rate (rETR) indicated damage to thylakoid membranes and destruction of photosynthetic system function. Immunofluorescence, immunoblot, and TEM analyses indicated that cellular damage caused autophagosome formation and triggered large-scale autophagic flux in P. globosa. Transcriptome analysis revealed many P. globosa genes that were differentially expressed in response to YX04 stress, most of which were involved in photosynthesis, respiration, cytoskeleton, microtubule, and autophagosome formation and fusion processes, which may trigger autophagic cell death. In addition to P. globosa, the YX04 supernatant showed high algicidal activity against Thalassiosira pseudonana, Thalassiosira weissflogii, Skeletonema costatum, Heterosigma akashiwo, and Prorocentrum donghaiense. This study highlights multiple mechanisms underlying YX04 supernatant toxicity toward P. globosa and its potential for controlling the occurrence of harmful algal blooms. IMPORTANCEP. globosa is one of the most notorious harmful algal bloom (HAB)-causing species, which can secrete hemolytic toxins, frequently cause serious ecological pollution, and pose a health hazard to animals and humans. Hence, screening for bacteria with high algicidal activity against P. globosa and studies on the algicidal characteristics and mechanism will contribute to providing an ecofriendly microorganism-controlling agent for preventing the occurrence of algal blooms and reducing the harm of algal blooms to the environment. Our study first reported the algicidal characteristic and mechanism of Microbulbifer sp. YX04 against P. globosa and demonstrated that P. globosa shows different response mechanisms, including movement ability, antioxidative systems, photosynthetic systems, gene expression, and cell death mode, to adapt to the adverse environment when algicidal compounds are present.


Assuntos
Morte Celular Autofágica , Gammaproteobacteria/química , Haptófitas/citologia , Haptófitas/efeitos dos fármacos , Herbicidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Gammaproteobacteria/metabolismo , Haptófitas/crescimento & desenvolvimento , Haptófitas/metabolismo , Proliferação Nociva de Algas , Herbicidas/química , Herbicidas/metabolismo , Herbicidas/farmacologia , Concentração de Íons de Hidrogênio , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio
3.
Mar Biotechnol (NY) ; 23(5): 809-820, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34595592

RESUMO

Viewing the considerable potential of marine agar as a source for the sustainable production of energy as well as nature-derived pharmaceutics, this work investigated the catalytic activity of three novel GH50 agarases from the mesophilic marine bacterium Microbulbifer elongatus PORT2 isolated from Indonesian coastal seawaters. The GH50 agarases AgaA50, AgaB50, and AgaC50 were identified through genome analysis; the corresponding genes were cloned and expressed in Escherichia coli BL21 (DE3). All recombinant agarases hydrolyzed ß-p-nitrophenyl galactopyranoside, indicating ß-glycosidase characteristics. AgaA50 and AgaB50 were able to cleave diverse natural agar species derived from Indonesian agarophytes, indicating a promising tolerance of these enzymes for substrate modifications. All three GH50 agarases degraded agarose, albeit with remarkable diversity in their catalytic activity and mode of action. AgaA50 and AgaC50 exerted exolytic activity releasing differently sized neoagarobioses, while AgaB50 showed additional endolytic activity in dependence on the substrate size. Surprisingly, AgaA50 and AgaB50 revealed considerable thermostability, retaining over 75% activity after 1-h incubation at 50 °C. Considering the thermal properties of agar, this makes these enzymes promising candidates for industrial processing.


Assuntos
Gammaproteobacteria/química , Glicosídeo Hidrolases/isolamento & purificação , Ágar/metabolismo , Proteínas de Bactérias/genética , Escherichia coli , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Alga Marinha/química
4.
J Microbiol Biotechnol ; 31(3): 475-482, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33397835

RESUMO

Prodigiosins, which are natural tripyrrole red pigments and synthetic derivatives, reportedly have multiple biological effects mainly on various types of cancer cells. However, the effects of bacterial prodigiosin on non-cancerous HaCaT human skin keratinocytes have not been reported. Therefore, the present study aimed to investigate the functional activities of prodigiosin derived from cultures of the bacterium Hahella chejuensis in HaCaT cells. Cell viability, the cell proliferation rate, and reactive oxygen species (ROS) production in vitro were assayed following treatment of HaCaT cells with prodigiosin. Prodigiosin did not cause cytotoxicity and notably increased proliferation of HaCaT cells. Furthermore, prodigiosin reduced ultraviolet (UV) irradiation-induced ROS production and the inflammatory response in HaCaT cells. More importantly, prodigiosin reduced matrix metalloproteinase-9 expression and increased collagen synthesis in UV-irradiated HaCaT cells, demonstrating that it elicits anti-aging effects. In conclusion, our results reveal that H. chejuensis-derived prodigiosin is a potential natural product to develop functional cosmetic ingredients.


Assuntos
Proliferação de Células/efeitos dos fármacos , Gammaproteobacteria/química , Queratinócitos/efeitos dos fármacos , Prodigiosina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular , Colágeno/metabolismo , Citocinas/metabolismo , Células HaCaT , Humanos , Inflamação , Queratinócitos/efeitos da radiação , Metaloproteinase 9 da Matriz/metabolismo , Envelhecimento da Pele , Raios Ultravioleta
5.
FEBS Lett ; 595(3): 351-359, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33277689

RESUMO

Glucuronoxylans represent a significant fraction of woody biomass, and its decomposition is complicated by the presence of lignin-carbohydrate complexes (LCCs). Herein, LCCs from birchwood were used to investigate the potential coordinated action of a glucuronoyl esterase (TtCE15A) and two α-glucuronidases (SdeAgu115A and AxyAgu115A). When supplementing α-glucuronidase with equimolar quantities of TtCE15A, total MeGlcpA released after 72 h by SdeAgu115A and AxyAgu115A increased from 52% to 67%, and 61% to 95%, respectively. Based on the combined TtCE15A and AxyAgu115A activities, ~ 34% of MeGlcpA in the extracted birchwood glucuronoxylan was occupied as LCCs. Notably, insoluble LCC fractions reduced soluble α-glucuronidase concentrations by up to 70%, whereas reduction in soluble TtCE15A was less than 30%, indicating different tendencies to adsorb onto the LCC substrate.


Assuntos
Proteínas de Bactérias/metabolismo , Esterases/metabolismo , Glicosídeo Hidrolases/metabolismo , Lignina/metabolismo , Polissacarídeos/metabolismo , Xilanos/metabolismo , Bacillaceae/química , Bacillaceae/enzimologia , Proteínas de Bactérias/genética , Betula/química , Biomassa , Ensaios Enzimáticos , Esterases/genética , Gammaproteobacteria/química , Gammaproteobacteria/enzimologia , Expressão Gênica , Ácido Glucurônico/metabolismo , Glicosídeo Hidrolases/genética , Hidrólise , Cinética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Madeira/química
6.
Genome Biol Evol ; 12(11): 1975-1987, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32797185

RESUMO

The Asian citrus psyllid Diaphorina citri (Insecta: Hemiptera: Psylloidea), a serious pest of citrus species worldwide, harbors vertically transmitted intracellular mutualists, Candidatus Profftella armatura (Profftella_DC, Gammaproteobacteria: Burkholderiales) and Candidatus Carsonella ruddii (Carsonella_DC, Gammaproteobacteria: Oceanospirillales). Whereas Carsonella_DC is a typical nutritional symbiont, Profftella_DC is a unique defensive symbiont with organelle-like features, including intracellular localization within the host, perfect infection in host populations, vertical transmission over evolutionary time, and drastic genome reduction down to much less than 1 Mb. Large parts of the 460-kb genome of Profftella_DC are devoted to genes for synthesizing a polyketide toxin; diaphorin. To better understand the evolution of this unusual symbiont, the present study analyzed the genome of Profftella_Dco, a sister lineage to Profftella_DC, using Diaphorina cf. continua, a host psyllid congeneric with D. citri. The genome of coresiding Carsonella (Carsonella_Dco) was also analyzed. The analysis revealed nearly perfect synteny conservation in these genomes with their counterparts from D. citri. The substitution rate analysis further demonstrated genomic stability of Profftella which is comparable to that of Carsonella. Profftella_Dco and Profftella_DC shared all genes for the biosynthesis of diaphorin, hemolysin, riboflavin, biotin, and carotenoids, underlining multiple roles of Profftella, which may contribute to stabilizing symbiotic relationships with the host. However, acyl carrier proteins were extensively amplified in polyketide synthases DipP and DipT for diaphorin synthesis in Profftella_Dco. This level of acyl carrier protein augmentation, unprecedented in modular polyketide synthases of any known organism, is not thought to influence the polyketide structure but may improve the synthesis efficiency.


Assuntos
Evolução Biológica , Gammaproteobacteria/genética , Genoma Bacteriano , Hemípteros/microbiologia , Proteínas Hemolisinas/genética , Sequência de Aminoácidos , Animais , Carotenoides/metabolismo , Gammaproteobacteria/química , Gammaproteobacteria/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Taxa de Mutação , Policetídeos/metabolismo , Simbiose , Vitaminas/genética , Vitaminas/metabolismo
7.
Chem Biodivers ; 17(7): e2000221, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32347603

RESUMO

The in situ application of iChip cultivation in mangrove sediment from Hainan province, China, led to the isolation of a novel bacterial species Gallaecimonas mangrovi HK-28. The extract of G. mangrovi HK-28 exhibited antibiotic activity against the aquatic pathogen Vibrio harveyi, and its chemical constituents were further investigated by bioactivity-guided isolation. Three new diketopiperazines, gallaecimonamides A-C, were accordingly isolated from the AcOEt extract of the fermentation broth of G. mangrovi HK-28. The planar structures of gallaecimonamides A-C were determined using HR-ESI-MS together with 1D- and 2D-NMR. The absolute configurations of gallaecimonamides A-C were assigned by optical rotation, NOESY experiment and TDDFT ECD calculations. The in vitro antibacterial and antimalarial activities of gallaecimonamides A-C were assessed. Gallaecimonamide A was found to display antibacterial activity against V. harveyi with a MIC value of 50 µm. However, gallaecimonamides B and C showed no antibacterial activity against V. harveyi (MIC >300 µm). In addition, all the isolates did not exhibit any inhibitory activities against V. parahaemolyticus (MIC>300 µm) and Plasmodium falciparum W2 (EC50 >100 µg/mL).


Assuntos
Antibacterianos/farmacologia , Dicetopiperazinas/farmacologia , Gammaproteobacteria/química , Vibrio/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/isolamento & purificação , Deutério , Dicetopiperazinas/química , Dicetopiperazinas/isolamento & purificação , Relação Dose-Resposta a Droga , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade
8.
Carbohydr Res ; 490: 107961, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32120020

RESUMO

Two polysaccharide fractions were obtained by mild acid degradation of the lipopolysaccharide of the marine bacterium Marinicella litoralis KMM 3900T. The major polysaccharide was found to contain glycerol 1-phosphate (PGro) and methyl phosphate substituents (PMe), and the following structure of its disaccharide repeating unit was established by sugar analysis, dephosphorylation, Smith degradation, and 1D and 2D NMR spectroscopy: →4)-α-L-Rhap2PGro(~40%)-(1 â†’ 3)-ß-D-Manp6PMe(~80%)-(1 â†’ . The minor polysaccharide was shown to consist of 4-O-sulfate-d-mannopyranosyl residues, non-stoichiometric methylated at O-3 and acetylated at O-6: →2)-α-D-Manp3R4S6Ac(~75%)-(1→, where R is Me (85%) or H (15%).


Assuntos
Gammaproteobacteria/química , Lipopolissacarídeos/química , Sulfatos/química , Sequência de Carboidratos , Organofosfatos/química , Fosforilação
9.
Arch Microbiol ; 202(4): 905-920, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31897537

RESUMO

The development of drug-resistant bacteria and the necessity for unique antimicrobial agents, directed to the search of new habitats to screen the production of anti-infective substances. Culture-dependent studies of heterotrophic bacteria from the intertidal macroalgae thriving along the Southern coast of India resulted in the isolation of 148 strains, which were assayed for antibacterial activities against wide spectrum of pathogens including drug-resistant pathogens, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE). Two of the most active strains with a zone of inhibition ≥ 30 mm on spot over lawn assay, belonging to the phyla Firmicutes and Gamma-proteobacteria, isolated from a  Rhodophycean marine macroalga, Hypnea valentiae, were selected for bioprospecting studies. They were further characterized as Shewanella algae MTCC 12715 and Bacillus amyloliquefaciens MTCC 12716, based on integrated phenotypic and genotypic analysis. The bacterial extracts exhibited significant antibacterial activities against MRSA and VRE with minimum inhibitory concentrations of 6.25-12.5 µg/mL. Time kill kinetic profiles of these bacteria revealed rapid bactericidal activity against both MRSA and E. coli, showing a ≥ 3log10 decline in viable cell count compared to the initial. In BacLight™ live/dead staining technique, the propidium iodide uptake results appropriately attributed that the components in the B. amyloliquefaciens extract might compromise the integrity of the cytoplasmic membrane of the pathogenic bacteria. Type-1 pks gene (MH157093) of S. algae and hybrid nrps/pks gene (MH157092) of B. amyloliquefaciens could be amplified. Antibacterial activity study combined with the results of amplified genes coding for polyketide synthase and nonribosomal peptide synthetase showed that these marine symbiotic bacteria had a promising broad-spectrum activity, and therefore, could be used against the emerging dilemma of antibiotic-resistant bacterial infections.


Assuntos
Bactérias/efeitos dos fármacos , Firmicutes/química , Gammaproteobacteria/química , Alga Marinha/microbiologia , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Bacillus amyloliquefaciens/enzimologia , Bacillus amyloliquefaciens/genética , Descoberta de Drogas , Escherichia coli/efeitos dos fármacos , Firmicutes/enzimologia , Firmicutes/genética , Gammaproteobacteria/enzimologia , Gammaproteobacteria/genética , Índia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peptídeo Sintases/genética , Policetídeo Sintases/genética , Estudos Prospectivos , Enterococos Resistentes à Vancomicina/efeitos dos fármacos
10.
Mar Drugs ; 18(12)2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33419303

RESUMO

The bioactivity-guided purification of the culture broth of the shipworm endosymbiont Teredinibacter turnerae strain 991H.S.0a.06 yielded a new fatty acid, turneroic acid (1), and two previously described oxylipins (2-3). Turneroic acid (1) is an 18-carbon fatty acid decorated by a hydroxy group and an epoxide ring. Compounds 1-3 inhibited bacterial biofilm formation in Staphylococcus epidermidis, while only 3 showed antimicrobial activity against planktonic S. epidermidis. Comparison of the bioactivity of 1-3 with structurally related compounds indicated the importance of the epoxide moiety for selective and potent biofilm inhibition.


Assuntos
Biofilmes/efeitos dos fármacos , Gammaproteobacteria , Oxilipinas/farmacologia , Simbiose/efeitos dos fármacos , Animais , Biofilmes/crescimento & desenvolvimento , Bivalves , Gammaproteobacteria/química , Testes de Sensibilidade Microbiana/métodos , Oxilipinas/isolamento & purificação , Simbiose/fisiologia
11.
Genomics ; 112(1): 805-808, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31128262

RESUMO

The present study is aimed to determine the draft genome of novel species of Zooshikella strain S2.1, a potential red pigmented strain isolated recently from the coastal sediment of Andaman and Nicobar Islands, India. This Gram negative, rod shaped aerobic bacterium produces pink, yellowish-red and dark red with metallic green sheen pigmentation on agar plates. It is able to grow under NaCl concentrations of 1 to 9%. This species has antimicrobial, antioxidant, dye and food colorant applications. Whole genome sequence analysis revealed that strain S2.1 represents a novel species of the genus Zooshikella. Draft genome and 16 s rRNA sequences of this species were deposited in GenBank under the Sequence Read Archive accession number PRJNA514840 and GenBank number MK680108, respectively. Here we report the draft genome of Zooshikella sp. strain S2.1 with ~5.9 Mb of chromosomal content and ~0.34 Mb of extra-chromosomal content.


Assuntos
Gammaproteobacteria/genética , Genoma Bacteriano , Anti-Infecciosos , Antioxidantes , Corantes , Corantes de Alimentos , Gammaproteobacteria/química , Gammaproteobacteria/isolamento & purificação , Sedimentos Geológicos/microbiologia
12.
ACS Chem Biol ; 14(10): 2160-2165, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31525026

RESUMO

Quaternary distance restraints are essential to define the three-dimensional structures of protein assemblies. These distances often fall within a range of 10-18 Å, which challenges the high and low measurement limits of conventional nuclear magnetic resonance (NMR) and double electron-electron resonance electron spin resonance spectroscopies. Here, we report the use of 19F paramagnetic relaxation enhancement (PRE) NMR in combination with 19F/paramagnetic labeling to equivalent sites in different subunits of a protein complex in micelles to determine intersubunit distances. The feasibility of this strategy was evaluated on a pentameric ligand-gated ion channel, for which we found excellent agreement of the 19F PRE NMR results with previous structural information. The study suggests that 19F PRE NMR is a viable tool in extracting distance restraints to define quaternary structures.


Assuntos
Canais Iônicos/química , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Animais , Proteínas de Bactérias/química , Dickeya , Flúor , Gammaproteobacteria/química , Camundongos , Ressonância Magnética Nuclear Biomolecular/métodos
13.
Electron. j. biotechnol ; 40: 40-44, July. 2019. tab, ilus
Artigo em Inglês | LILACS | ID: biblio-1053231

RESUMO

Background: The study of plant-associated microorganisms is very important in the discovery and development of bioactive compounds. Pseudomonas is a diverse genus of Gammaproteobacteria comprising more than 60 species capable of establishing themselves in many habitats, which include leaves and stems of many plants. There are reports of metabolites with diverse biological activity obtained from bacteria of this genus, and some of the metabolites have shown cytotoxic activity against cancer cell lines. Because of the high incidence of cancer, research in recent years has focused on obtaining new sources of active compounds that exhibit interesting pharmacodynamic and pharmacokinetic properties that lead to the development of new therapeutic agents. Results: A bacterial strain was isolated from tumors located in the stem of Pinus patula, and it was identified as Pseudomonas cedrina. Extracts from biomass and broth of P. cedrina were obtained with chloroform:methanol (1:1). Only biomass extracts exhibited antiproliferative activity against human tumor cell lines of cervix (HeLa), lung (A-549), and breast (HBL-100). In addition, a biomass extract from P. cedrina was fractioned by silica gel column chromatography and two diketopiperazines were isolated: cyclo-(L-Prolyl-L-Valine) and cyclo-(L-Leucyl-L-Proline). Conclusions: This is the first report on the association of P. cedrina with the stems of P. patula in Mexico and the antiproliferative activity of extracts from this species of bacteria against human solid tumor cell lines.


Assuntos
Pseudomonas/química , Pinus/microbiologia , Linhagem Celular Tumoral/efeitos dos fármacos , Antineoplásicos/farmacologia , Plantas/microbiologia , Simbiose , Biomassa , Gammaproteobacteria/química , Proliferação de Células/efeitos dos fármacos
14.
J Nat Prod ; 82(7): 1930-1934, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31181927

RESUMO

Here we report the discovery of two new 3-acetamido-4-hydroxybenzoate esters, bulbiferates A (1) and B (2), isolated from Microbulbifer sp. cultivated from the marine tunicate Ecteinascidia turbinata. The structures of 1 and 2 were determined by analysis of 2D NMR and MS data. Additionally, three synthetic analogues (3-5), differing in ester sizes/lengths, were prepared for the purposes of evaluating potential structure-activity relationships; no clear correlations tying ester lengths to activity were evident. Bulbiferates A (1) and B (2) demonstrated antibacterial activity against both Escherichia coli (E. coli) and methicillin-sensitive Staphylococcus aureus (MSSA), whereas the synthetic analogues 3 and 4 displayed activity only against MSSA.


Assuntos
Antibacterianos/farmacologia , Gammaproteobacteria/química , Água do Mar/microbiologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Análise Espectral/métodos , Relação Estrutura-Atividade
15.
J Agric Food Chem ; 67(18): 5085-5095, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30986052

RESUMO

Plant-growth-promoting bacteria show promises in crop production; nevertheless, innovation in their stable delivery is required for practical use by farmers. Herein, the composite of poly(vinyl alcohol)/poly(vinylpyrrolidone) plasticized with glycerol and loaded with the microbial consortium ( Bacillus subtilis plus Seratia marcescens) was fabricated and engineered onto canola ( Brassica napus L.) seed via electrospinning. Scanning electron microscopy showed that the biocomposite is a one-dimensional membrane, which encapsulated microbes in a multilayered nanostructure, and their interfacial behavior between microorganism and seed is beneficial for safer farming. A universal testing machine and thermogravimetric analysis demonstrated that the biocomposite holds sufficient thermomechanical properties for stable handling and practical management. A spectroscopic study resolved the living hybrid-polymer structure of the biocomposite and proved the plasticizing role of glycerol. A swelling study supports the degradation of the biocomposite in the hydrophilic environment as a result of the leaching of the plasticizer, which is important for the sustained release of microbial cells. A shelf life study supported that the biocomposite seed coat placed a threshold level of microbes [5.675 ± 0.48 log10 colony forming units (CFU)/seed] and maintained their satisfactory viability for 15 days at room temperature. An antifungal and nutrient-solubilizing study supported that the biocomposite seed coat could provide opportunities to biocontrol diseases and improve nutrient acquisition by the plant. A pot study documents the better performance of the biocomposite seed coat on seed germination, seedling growth, leaf area, plant dry biomass, and root system. A chemical and microbial study demonstrated that the biocomposite seed coat improved the effectiveness of the bioinoculant in the root-soil interface, where they survive, flourish, and increase the nutrient pool status. In particular, this study presents advances in the fabrication of the biocomposite for encapsulation, preservation, sustained release, and efficacious use of microorganisms onto seeds for precision farming.


Assuntos
Inoculantes Agrícolas/química , Bacillus subtilis/química , Brassica napus/crescimento & desenvolvimento , Gammaproteobacteria/química , Plastificantes/química , Álcool de Polivinil/análogos & derivados , Povidona/análogos & derivados , Sementes/microbiologia , Inoculantes Agrícolas/fisiologia , Bacillus subtilis/fisiologia , Brassica napus/microbiologia , Gammaproteobacteria/fisiologia , Álcool de Polivinil/química , Povidona/química , Rizosfera , Sementes/crescimento & desenvolvimento
16.
Int J Mol Sci ; 20(8)2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022840

RESUMO

A library of 197 endophytic fungi and bacteria isolated from the Amazonian palm tree Astrocaryum sciophilum was extracted and screened for antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Four out of five antibacterial ethyl acetate extracts were also cytotoxic for the MRC-5 cells line. Liquid chromatography coupled to tandem mass spectrometry (UPHLC-HRMS/MS) analyses combined with molecular networking data processing were carried out to allow the identification of depsipeptides and cyclopeptides responsible for the cytotoxicity in the dataset. Specific ion clusters from the active Luteibacter sp. extract were also highlighted using an MRSA activity filter. A chemical study of Luteibacter sp. was conducted leading to the structural characterization of eight fatty acid exhibiting antimicrobial activity against MRSA in the tens of µg/mL range.


Assuntos
Antibacterianos/química , Arecaceae/microbiologia , Endófitos/química , Gammaproteobacteria/química , Lipídeos/química , Antibacterianos/farmacologia , Cromatografia Líquida de Alta Pressão , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Humanos , Lipídeos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Infecções Estafilocócicas/tratamento farmacológico , Espectrometria de Massas em Tandem , Árvores/microbiologia
17.
Chembiochem ; 20(2): 230-236, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30179300

RESUMO

Endozoicomonas sp. HEX311 is a Gram-negative bacterium known to establish a commensal interaction with the marine demosponge Suberites domuncula. The molecular bases of the sponge-microbe interaction events are still poorly defined. Nevertheless, it has been proved that S. domuncula possesses an innate immune system with similarities to the mammalian one and is able to recognize the main component of the Gram-negative bacteria cell wall: the lipopolysaccharide. Whether this recognition occurs in a structure-dependent manner, which is typical for mammalian immune system receptors, is still under investigation. Herein, we report the Endozoicomonas sp. HEX311 lipid A structure obtained by a combination of data attained from chemical, MALDI MS, and MS2 approaches. The lipid A is a complex family of species decorated by pyrophosphate and phosphate units and carrying (R)-3-hydroxydodecanoic acid, (R)-3-hydroxytetradecanonic acid, iso-2-hydroxyundecanoic acid, iso-(R)-3-hydroxyundecanoic acid, and iso-nonanoic acid as acyl chains.


Assuntos
Gammaproteobacteria/química , Lipídeo A/química , Poríferos/microbiologia , Animais , Configuração de Carboidratos , Gammaproteobacteria/isolamento & purificação , Lipídeo A/isolamento & purificação
18.
Arch Microbiol ; 201(4): 531-538, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30421027

RESUMO

A novel bacterium, designated strain Acr-12T, was isolated from the coral Acropora sp. off coast of Southern Taiwan. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain Acr-12T belonged to the genus Endozoicomonas and had closest phylogenetic identity to Endozoicomonas acroporae Acr-14T (98.7%) and Endozoicomonas atrinae WP70T (97.8%). Cells of strain Acr-12T were Gram-negative, aerobic, non-motile, poly-ß-hydroxybutyrate-accumulating, rod-shaped and formed creamy white colonies. Optimal growth occurred at 30 °C, pH 7, and in the presence of 3% NaCl. Strain Acr-12T contained summed feature 3 (C16:1ω7c and/or C16:1ω6c), summed feature 8 (C18:1ω7c and/or C18:1ω6c) and C16:0 as the predominant fatty acids. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The predominant isoprenoid quinone was Q-9. The genomic DNA G + C content was 49.6 mol%. The DNA-DNA relatedness of strain Acr-12T with respect to the closest species of the genus Endozoicomonas was less than 30%. Phenotypic characteristics of the novel strain also differed from those of the closest related species of the genus Endozoicomonas. On the basis of the genotypic, chemotaxonomic, and phenotypic data, strain Acr-12T represents a novel species in the genus Endozoicomonas, for which the name Endozoicomonas coralli sp. nov. is proposed. The type strain is Acr-12T (= BCRC 80921T = KCTC 42900T).


Assuntos
Antozoários/microbiologia , Gammaproteobacteria/classificação , Animais , Composição de Bases , DNA Bacteriano/química , Ácidos Graxos/análise , Gammaproteobacteria/química , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Genótipo , Hidroxibutiratos/metabolismo , Lipídeos/análise , Fosfolipídeos/análise , Filogenia , Poliésteres/metabolismo , Quinonas/análise , RNA Ribossômico 16S/genética
19.
J Biol Chem ; 293(47): 18296-18308, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30282808

RESUMO

Fucoidans are chemically complex and highly heterogeneous sulfated marine fucans from brown macro algae. Possessing a variety of physicochemical and biological activities, fucoidans are used as gelling and thickening agents in the food industry and have anticoagulant, antiviral, antitumor, antibacterial, and immune activities. Although fucoidan-depolymerizing enzymes have been identified, the molecular basis of their activity on these chemically complex polysaccharides remains largely uninvestigated. In this study, we focused on three glycoside hydrolase family 107 (GH107) enzymes: MfFcnA and two newly identified members, P5AFcnA and P19DFcnA, from a bacterial species of the genus Psychromonas Using carbohydrate-PAGE, we show that P5AFcnA and P19DFcnA are active on fucoidans that differ from those depolymerized by MfFcnA, revealing differential substrate specificity within the GH107 family. Using a combination of X-ray crystallography and NMR analyses, we further show that GH107 family enzymes share features of their structures and catalytic mechanisms with GH29 α-l-fucosidases. However, we found that GH107 enzymes have the distinction of utilizing a histidine side chain as the proposed acid/base catalyst in its retaining mechanism. Further interpretation of the structural data indicated that the active-site architectures within this family are highly variable, likely reflecting the specificity of GH107 enzymes for different fucoidan substructures. Together, these findings begin to illuminate the molecular details underpinning the biological processing of fucoidans.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Gammaproteobacteria/enzimologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , alfa-L-Fucosidase/química , alfa-L-Fucosidase/metabolismo , Proteínas de Bactérias/genética , Catálise , Domínio Catalítico , Cristalografia por Raios X , Gammaproteobacteria/química , Gammaproteobacteria/genética , Glicosídeo Hidrolases/genética , Modelos Moleculares , Família Multigênica , Polissacarídeos/metabolismo , Especificidade por Substrato , alfa-L-Fucosidase/genética
20.
Res Microbiol ; 169(10): 638-648, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30031896

RESUMO

In this study, the differential protein expression of the acidophilic halophile, Acidihalobacter prosperus DSM 14174 (strain V6) was studied with the aim of understanding its mechanisms of tolerance to high chloride ion stress in the presence of low pH, using Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH-MS). In acidophiles, chloride stress results in both osmotic stress as well as acidification of the cytoplasm due to the ability of chloride to permeate the cell membrane and disrupt the reversed transmembrane potential which normally extrudes protons. The proteomic response of A. prosperus DSM 14174 to elevated chloride concentrations included the production of osmotic stress regulators that potentially induced the production of compatibles solutes, of which the most significant increase was in the synthesis of ectoine. Other responses directly related to the increased chloride and acid stress, included the increased synthesis of glutathione, changes in carbon flux, the increased production of amino acids, the decreased production of ribosomal proteins, the efflux of metals and protons, and the increase in proteins involved in DNA repair and membrane biosynthesis. Energy generation through iron oxidation and sulphur oxidation were decreased, and energy was probably obtained from the metabolism of glycogen stores. Overall, these studies have helped to create a model of tolerance to elevated chloride under acidic conditions by A. prosperus DSM 14174 that differs from the previous model developed for the type strain, A. prosperus DSM 5130T.


Assuntos
Ácidos/metabolismo , Proteínas de Bactérias/genética , Cloretos/metabolismo , Gammaproteobacteria/metabolismo , Cloreto de Sódio/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Reparo do DNA , Gammaproteobacteria/química , Gammaproteobacteria/genética , Espectrometria de Massas , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA